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ABSTRACT: 
In this paper, the one-dimensional PDE model is 

extended to the two-dimensional model, so that the 

COVID-19 prediction model which is in line with the 

actual two-dimensional regional distribution can be 

established. Based on the prediction model, the 

undetermined parameters in the differential equation 

model are inversed by using the spontaneous 

perturbation stochastic gradient algorithm (SPSA) 

according to the actual number of infections, so as to 

accurately predict the number of infections in the 

future. The effectiveness of this model is also 

confirmed by the recent outbreak of local epidemic 

data in China. 
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I. INTRODUCTION 
COVID-19 has been spreading around the 

world since 2019. As of now, it has infected more 

than more than 200000000 people worldwide and 

nearly 5 million people have died. It is a very 

dangerous pandemic of world infectious diseases. 

Some infection prediction models of COVID-19were 

developed in order to help countries fight against 

COVID-19. The aim of these models was to predict 

the number of COVID-19 infections through various 

mathematical modeling methods. 

Ordinary differential equation (ODE) 

models are often used to describe population growth 

and infection population in biological or ecological 

systems. So the ODE model was first used for the 

transmission of COVID-19. However, the model for 

COVID-19 infection is difficult to effectively depict 

the spatial distribution of COVID-19. Therefore, 

Wang and Yamamoto [1] proposed partial differential 

equation (PDE) model to predict the number of 

COVID-19 infection in different regions. However, 

the PDE model is only an equation for 

one-dimensional spatial coordinates, which needs to 

project the two-dimensional region to 

one-dimensional coordinates in advance, and the 

rationality of this projection is difficult to ensure. 

Considering that the actual region is two-dimensional, 

it is in line with the actual situation to extend the 

model to the partial differential equation model of 

two-dimensional spatial coordinates. We know that 

based on the differential equation model, the 

undetermined parameters in the differential equation 

model are inversely determined by using the existing 

historical actual data, so as to predict the future 

situation, which involves the solution of the 

differential equation model. Due to the complexity of 

the equation form, the numerical method is generally 

used to solve the differential equations with different 

parameters. Finite difference method and finite 

element method are usually used. However, these 

methods are based on mesh generation in computing 

domain, so only two adjacent meshes have direct 

effects, but this is not reasonable for 

COVID-19infection, because the point to point 

traffic tools between non adjacent areas may be 

transmitted. Artificial intelligence methods such as 

artificial neural network may be an effective method 

to solve this problem, but because there are not 

enough data points and the model parameters fitted 

and trained may lack sufficient practical significance 

[2-6], the physical network model that can combine 

certain physical information often has better 

performance than the pure statistical learning method. 

The method based on differential equation model and 

combined with actual data to retrieve the 

undetermined parameters in the equation can be 

regarded as a physics-based data-driven model to a 

certain extent. This paper aims to continue this idea, 

extend the one-dimensional PDE model to 

two-dimensional, make the model conform to the 

actual two-dimensional regional distribution, and 

improve the effectiveness and practicability of the 

model. 
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II. METHODOLOGY 
2.1 partial differential equation model 

Wang and Yamamoto proposed the PDE model as follows: 
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The specific meaning of each item in the Eq. 

(1) can be seen in reference [1]. The PDE model has 

indeed achieved good results, but because the model 

is a one-dimensional model, it is necessary to 

determine a reasonable order of the areas to be 

studied in advance, that is, the areas to be studied are 

projected onto one-dimensional European space, and 

it is difficult to reasonably project the 

two-dimensional plane areas onto one-dimensional 

European space, At least we need to sort hard first, 

which brings obstacles to the practical application of 

the PDE model. Therefore, this paper aims to expand 

the above PDE model to a two-dimensional model in 

line with the actual regional distribution, namely: 
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In addition, it should also be noted that non 

adjacent regions (e.g. provinces) also have certain 

diffusion capacity, and the diffusion can be realized 

without passing through adjacent provinces. For 

example, flights between different provinces can 

realize virus transmission between non adjacent 

regions. Therefore, the traditional grid method cannot 

be used for the partial differential equation in Eq. (1) 

(e.g. finite difference method, finite volume method, 

finite element method, etc.) The meshless method 

with physical network characteristics should be used 

to solve, because in the meshless method, the node 

influence domain can contain more nodes by setting 

different influence domain sizes, so as to characterize 

the virus diffusion and propagation between 

geometrically non adjacent nodes. That is, the PDE 

model in this paper is 
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In this paper, the finite volume method is used to effectively solve the two-dimensional PDE [7]. The 

specific discrete format is deduced as follows. The control volume V is obtained by integrating both ends of the 

equation at the same time: 
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Integrating the control volume and time at both ends of the above formula, the left end of the above formula 

obtains: 
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For the first term at the right end of the above equation, the following is obtained by using Oko formula: 
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The second term at the right end of Eq.(6) is obtained: 
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The third item at the right end of the above equation is obtained: 
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It can be obtained that the fully implicit discrete scheme is as follows: 
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(9)  

 

When the parameters in Eq. (2) are 

determined, the differential equation can be solved 

by Eq. (9). It should be pointed out that since the 

number of infected people is an integer, we calculate 

the calculated number of infected people by 

rounding. 

 

2.2 training data and model prediction 

method 

This paper needs to fit the actual data to 

determine the unknown parameters in Eq. (2). In 

order to reduce the parameters in the model training 

process and reduce the multi solution of model 

inversion, we know that this fitting problem is 

actually an optimization problem. Therefore, this 

paper uses the spontaneous perturbation stochastic 

gradient algorithm to solve this optimization [8]. The 

specific solution is:First, consider defining the 

optimization objective function, 

 

   O m g m n 
  

 (10)  

 

where  g m  represents the differential 

equation model in Section 2.1, m


is the vector of 

undetermined parameters in the differential equation, 

and n


is the observed local cumulative number of 

infections in each province. 

In the optimization process, the 

undetermined parameters in the differential equation 

will meet the limiting conditions: 
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low upm m m   (11)  

 

Where 
lowm  is the vector of lower limits of the model parameters, 

upm  is the vector of upper limits of the 

model parameters. 

The simultaneous perturbation stochastic approximation (SPSA) algorithm is used to optimize the objective 

function in Eq. (11). Then, based on SPSA, suppose it is at the kth iteration, through multiple simultaneous 

perturbations of 
km , then the gradient of  kO m

v
 is approximated as 
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Therefore, the model parameters at the k+1th step 
1km 

 can be updated as 

 1k k k

k km m g m  
v v v

 (13)  

 

where k  denotes the kth iteration step size.Until the maximum number of iterative steps is reached or the 

convergence condition is given. 

 

III. A PRACTICAL APPLICATION 
The training data selected in this paper use the relevant data of local outbreaks in Gansu, Shaanxi and Inner 

Mongolia. The specific data are as follows: 

 

Table. 1 the data of infections during the local outbreak in Northwest China 

Cities 
New confirmed population of COVID-19 (local) 

October 19th October 20th October 21th October 22th October 23th October 24th 

Inner 

Mongolia 

Autonomous 

Region 

8 2 11 11 7 19 

Guizhou 1 0 1 0 0 4 

Gansu 4 5 9 17 6 4 

Beijing 1 0 1 6 4 2 

Shanxi 1 0 3 0 1 2 

Hunan 0 0 0 0 1 2 

Hubei 0 0 0 0 1 2 

Ningxia 1 4 2 3 6 0 

Yunnan 1 0 0 1 0 0 

Qinghai 0 0 1 0 0 0 

Hubei 0 2 0 0 0 0 

 

The historical data of the first five days in 

Table 1 are used to train the differential equation 

model and predict the cumulative number of 

confirmed patients on the sixth day. The fitting and 

prediction results are shown in Figure 1. It can be 

seen that the fitting accuracy of the number of 

historical infections is high, the average error is less 

than 10%, and the predicted number of infections on 

the sixth day is not much different from the actual 

data, and the error is also less than 10%. 
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(a) the Nei Monggol Autonomous Region (b) Guizhou 

  
(c) Gansu (d) Beijing 

  
(e) Shanxi (f) Hunan 

  
(g) Hebei (h) Ningxia 
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(i) Yunnan (j) Qinghai 

 

 

(k) Hubei  

Fig. 1 comparisons of model-prediction results and real data of some different provinces 

 

IV. CONCLUSION 
This paper presents a novel COVID-19 

prediction model based on two-dimensional partial 

differential equation (PDE) model. The model was 

fitted with training data from recent outbreak in 

Northwest China, and the parameters of the 

differential equation model were determined to 

predict the number of COVID-19 infection. The 

actual calculation results also verified the validity of 

the model. 

In this paper, the one-dimensional PDE 

model is extended to the two-dimensional model, so 

that the COVID-19 prediction model which is in line 

with the actual two-dimensional regional distribution 

can be established. Based on the prediction model, 

the undetermined parameters in the differential 

equation model are inversed by using the 

synchronous perturbation random gradient algorithm 

(SPSA) according to the actual number of infections, 

so as to accurately predict the number of infections in 

the future. The effectiveness of this model is also 

confirmed by the recent outbreak of local epidemic 

data in China. 
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